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A theory of best copositive approximation including a “zero in the convex hull”
characterization, alternation theorem, and strong uniqueness theorem is developed
for a general n-dimensional Chebyshev subspace in C[a,b]. In addition, a
computational algorithm is discussed. 1993 Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to develop a theory for best uniform
copositive approximation of continuous functions. Specifically, given a
function fe C[a,b] and an n-dimensional Chebyshev subspace M of
Cla, b], we study

inf{{|f—qll :ge Mand f(x)g(x)}20,xe[a, b]}.

The concept of best copositive approximation was introduced by Passow
and Raymon in 1974 [4], where they showed that the best copositive
approximation is unique if M is a subspace of all algebraic polynomials of
degree <n— 1. Moreover, they obtained a Jackson-type theorem for the
degree of copositive approximation to f when f is a proper piecewise
monotone function. Some other people [3, 6, 14] have also investigated
this aspect. In the other direction, in 1975 Passow and Taylor [5]
developed an alternation theory in the case when f does not change sign on
any interval and M is an n-dimensional extended Chebyshev subspace
of C[a, b] of order 3. As a consequence, they obtained a “zero in the
convex hull” characterization when the derivative of the best copositive
approximation to f is nonzero at the points that f changes sign. This
second result was extended by Shi [9] to the case that the sign changes of
f are allowed on intervals but still the derivative of the best copositive
approximation to f is nonzero at the points that f changes sign. In 1986
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Zhong [15] obtained a “zero in the convex hull” characterization theorem
and an alternation theory under only the condition that M is an n-dimen-
sional extended Chebyshev subspace of C[a, ] of order 2. Also Zhong
showed that the best copositive approximation is strongly unique.

However, for the case where M is a general n-dimensional Chebyshev
subspace of C[a, b], neither a “zero in the convex hull” characterization
nor an alternation theory has been developed for the best copositive
approximation. Besides, the uniqueness of best copositive approximation
for this general case has not been known. In this paper, we give affirmative
answers for the above problems. In Section 2 we give the definitions, nota-
tions, and basic facts that shall be used throughout this paper. In Section 3
three characterizations of best copositive approximations are established.
A strong uniqueness theorem and the continuity of the best copositive
approximation operator on a subset of C[a, b] are developed in Section 4
and a computational algorithm is discussed in Section 5.

2. DEFINITIONS, NOTATIONS, AND Basic FAcTs

Let M be an n-dimensional Chebyshev subspace of C[a, b], iec., every
nonzero element of M has at most n— 1 zeros. Let f € C[a, b] and define
M ={peM:p(x)f(x)=>0 for all xe[a,b]}. If pe M, has the property
that

I/ — pll =inf{{f—ql : ge M},

where ||h]| = max {|h(x)| : xe [a, b]}, then we say that p is a best copositive
approximation (from M) 1o f.

Let L(f)={xe[a b]:f(x)<0}, U(f)={xel[a, b]:f(x)>0}, and
S(f)=L(f)n U(f), where the bar denotes point set closure in the reals.
We say that f changes sign at 1€ (a, b) if and only if 1 € S(f). On the other
hand, we say that f changes sign on the interval [¢, d] < (a, b) if and only
if te [c, d] implies that f(¢) =0 with ce U(f) and de L(f) (or ce L(f) and
de U(f))

For f'e C[a, b], let the sets SZ(f) and DZ(f) of “simple” and “double”
zeros be defined by Z(f)={xel[a,b]):f(x)=0}, DZ(f)={xeZ(f):
there exist u, ve [a, b] with u < x < v such that f has constant nonzero sign
on [u, v 1\{x}}, and SZ(f) = Z(/\DZ(f).

Denote the cardinality of a set 4 by card(A4).

THEOREM 2.1 (See [16, p. 24]). Let M be an n-dimensional subspace
of Cla,b). Then M is Chebyshev if and only if card(SZ(q))+
2card(DZ(q))<n—1 for all ge M\{0}.
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THEOREM 2.2 (See [16, p. 25]). Let M be an n-dimensional Chebyshev
subspace of Cl[a, b], and s, .., s;, d,, ..., d,€ [a, b] distinct points with s, <
Sy oo <8y, a<d < - <d;<b and 0<k +2I<n—1. Then there is a
ge M with SZ(q)= {5/, .., sy} and DZ(q) = {d,, .., d,} if at least one of the
following conditions holds:

(a) n—(k+2l)is odd,
(b) a<s,, s, <b;
(c) a=s,,s,=b.

CorOLLARY 23. If M is an n-dimensional Chebyshev subspace of
Cla,b) and z, ..., z,, are m {<n—1) distinct points in (a, b), then there is
a g€ M such that q has simple zeros at these points and no other zeros.

If the number of elements in S(f) plus the number of times f changes
sign on intervals is greater than or equal to #, then for any ge M/, g has
at least n zeros, so ¢g(x) =0, therefore M, consists of just the zero function.

If the number of elements in .S(f) plus the number of times f changes
sign on intervals is less than #, let z,, ..., z,, be all the points at which f
changes sign and [z,,,,, %, (], - LZn, 4y ] denote all the intervals on
which f changes sign. Then by Corollary 2.3, there is a g€ M such that ¢
has simple zeros at z,, .., Z,,, Z,,4 1, -» Zy and no other zeros. Thus ¢ or
—ge M,. Hence M, contains nontrivial functions.

Thus, throughout this paper, we always assume that the number of
elements in S(f) plus the number of times f/ changes sign on intervals is less
than n. Let S(f)={z,, ., z,}, where 0<m<n.

To conclude this section, we state two well-known theorems.

THEOREM 2.4 (Theorem on Linear Inequalities [ 1, p. 19]). Let U be a
compact subset of R". Then there exists a ze R" so that (u,z)>0 for all
ue U if and only if the origin of R" does not belong to the convex hull of U.

THEOREM 2.5 (Theorem of Carathéodory [1, p. 17]). Let A be a subset
of an n-dimensional linear space. Every point of the convex hull of A is
expressible as a convex linear combination of n+ 1 (or fewer) elements.

3. CHARACTERIZATION OF BEST COPOSITIVE APPROXIMATIONS

LeMMA 3.1. Let M be an n-dimensional Chebyshev subspace of C[a, b].
Then for any p,ge M\{0} and x € [a, b],

. plx+0) . plx—20)
aling+ q(x+90) and 51—1531* g(x—9)

always exist as extended real numbers.
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Proof. Without loss of generality, we may assume that g(x + &) >0 for
0<6<4,.

Suppose we have
plx+9)

=0, lim sup =p,

.. px+9)
lim inf
50+ q(x+9)

s—-0" g(x+9d)

and a < §.
Let « <y < B. Then there exist strictly decreasing sequences d, —»0* and
&, — 0% such that

p(x+4,) . plx+é&)
—_—= 3 = lim ————.
kiooq(x-F(Sk) x<y<p kgr;q(X'FSk)

Hence, there exists N >0 such that

p(x+d,) and M>}) forall k= N.

qx+on) g(x + )

Thus, p(x+d,) —yg(x +3,)<0and p(x +¢,) —yg(x +¢&,)>0for all k = N.
So p—yq has more than # zeros and thus p = yq, which contradicts o < f.
Hence, o = f8. That is,

p(x+9)

m exists.
-0+ g(x+9)

Similar, we have

m p(x—9)

1 exists.
5o+ g(x—9) I

Lemma 32, Let feCla,b] and Mo={geM:q(x)=0,xeS(f)}.
If zy,.,z, are all the points at which f changes sign and
(Zmsts Ui Ty [Zns in] (NSn—1) are all the intervals on which f
changes  sign, then  there exist ¢,,..¢,_,€M, and b,e
(Max{z,, .., Zy, Uy 1s . Uy}, b] such that g€ M|, 01 (ie. ¢:(x) f(x) 20
Jor all xe[a,by), i=1,..,n—m) and My=span{g,, ... ¢, .}

Proof. Since S(f)=1{z,,..,z,} consists of m distinct points, the
dimension of M, is n—m. Choose {z;}7-r,, and {u,}"Z\,, in
(max{z,, .., Zy, Up 415 - Un}> b] so that

N1 SUN 1 <Zya<Un 2 < - <Z,  <Up_g.

Select ¢, M\{0}, i=m+1,..,n—1, such that
$i(u)=¢,(z,)=0 for j=1,.,i—1,i+1,.,n—1
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Hence ¢; changes sign at z,, .., Z,1s Zp g 10 oos Zits Wis Zi4 15 000 Zn_ 1. Also,
we choose ¢, M\{0} such that ¢,(z,)=0, i=1,.,n—1. It is clear that
we may assume

@:(x) f(x)=0, forall xel[a,zy,,)i=m+1,.,n
Next we shall show that ¢,,, ,, .., ¢, are linearly independent. Assume that

Cm+1¢m+l+ +cn¢n=0'
Since ¢,(z;)#0 fori=m+1,..,n—1, and
Cm+l¢m+l(zi)+ +Cn¢n(zi)=ci¢i(zi)=0’

¢;=0, i=m+1,.,n—1. So c¢,4,=0 and thus ¢,=0. Therefore
@1y §, are linearly independent. Let bo=1z,,,. Then ¢,e M;|[, 5,
i=m+1,..,n, and My=span{é,,. |, .. $,}. This completes the proof. }

LEMMA 3.3. Assume that My=span{@,, ... ¢, .}, where ¢, ... ¢, €
M| .0 Let @=37""¢,. Then for any he M, there is a iy >0 such that
D+ Ahe M|, p for 0<A< Ay,

Proof. Since M,=span{¢,,..,d,_,,+ for any he M,, we may write
h=%"""a,$, Hence,

i=1

¢+/1h="zm(1 +4a)) ¢..

i=1

Choose Ay>0 small enough so that 1+ 4a,>0, i=1,.,n—m. Then
D+ ihe M|, pyfor 0<i<i;

LemMma 34. If, for some xe S(f) and pe M/,

p(x+0) < . px—9) )
Am ere 0 o lim g0 )

then for any he M, there exist A, >0 and 6, > 0 such that
Six+8)[p(x+d)+Ah(x+5)]=0 {or f(x—=0)[p(x—08)+Ah(x—5)]=0)
Jor all 0< A< iy and 0 <9 <.

Proof. Without loss of generality, we may assume that fis increasing at
x € S(f). Since

p(x+9)
s B(xt )
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there exists 4, >0 such that

plx+6)

- P(x+ ) >4 >0

So there exists d, >0 such that

plx+4)
¢(x+5)>/{l>0 for 0<d<é,.

By Lemma 3.3, for any he M|, there exists 4, >0 such that

D(x+38)+ A,h(x+0)>0 forall 0<o<é,
50

px+8)+ A, Ah(x+6)>0 forall 0<d<d,.
Letting i, =4,4,, we have
fx+8)[p(x+8)+ Ah(x+8)]1=0
forall 0<i<4;,0<d<dy. |

LeMMa 3.5. Letr My=span{d,,..d,_,.}, where ¢, ,...¢, €
M (o by and P(x)=37_[" $:(x). Then

i=1
. $i(x+9) $i(x—9)

— <1 — 1 R
Sy and  lim G —9) forany  xe&S(f)
Proof. Without loss of generality, we may assume that ¢,(x + 6) > 0 for

0<0<6y, i=1,..,n—m. Then we have

P(x+8)= ) ¢(x+0)=¢,(x+3) if 0<d8<dy,

i=1
SO

$:(x+9) . $:(x+9)
———g s 0 5< > ———__—S .
Pty <0<, andthus - lim ‘e

Similarly, we have

li ¢i(X-5)<l

Rl sy Tt |

Throughout this paper, we always assume that M,=span{¢,, .., ., .},
where ¢, .., 0, €M/ .s; and by is as in Lemma 3.2. Let &(x)=

i @.(x).
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For pe M/, define
Xo=X,(p)={xela b]: fx)—plx)=|f~pl}
X =X (p)={xelab]: flx)-p(x)=—|f-pl}
X=X ,(p)={xe USNS(f): p(x)=0, [ f(x) <l f~ pl}
X =X ,(p)={xe LYNS(S): p(x)=0, | f(x) <|f—pl}

. plx+46)
X =X = M ——
= Xip) ={xesi): im BEES o)
_ - gim P9
X4—X4(P)—{x€5(f) .o_lin& (p(x_&)—O}
X:=X+|UX71UX+2UX,2
X:*=X3UX4
X, =X uX}*
1 if xeX, uX,,
(x) -1 if xeX_,uX_,
o{Xx)=
sgn D(x + &) if xeX,uX,, where ®(x+)#0

for all 0 < & < d,.

LEMMA 3.6 (See [15]). Let feCla, b]\M. Then the best copositive
approximation to f is nonzero.

Proof. Assume that p(x)=0 is a best copositive approximation to f.
By the Kolmogorov criterion, we have

max (—g(x)) f(x)=0 forall geM,.

xeXiyuX_y

Let z,,..,z, be all the points at which f changes sign and
[Zmats Umards oo [Zns Un] (N<n—1) denote all the intervals on which f
changes sign. Let t,e(z,,u,), i=m+1, .., N. Choose goe M such that g,
has simple zeros at z,, ..., Z,;s Ly 1y - I and no other zeros. Set ¢, = gq,
and select o= +1 or —1 appropriately so that g, € M,. It is obvious that
forany xe X, OX_ |, X& {2, s Zms bms1s - In}. Since | f(x)| =[f] >0
for all xeX,, uX_,, q.(x)f(x)>0 for all xeX,,vuX_,. Thus
max, .y, .y, (—¢,(x)) f(x)<0. This is a contradiction. |

LeMMa 3.7. Let pe M\ {O}. Suppose qe M, satisfies

g(x+9) . g(x=9)
airgh <D(x+5)>0 for xeX;, lim

Jim, ¢(x_5)>0 for xeX,,
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and

sgn g(x) =sgf(x)  if xedy={xeL(f)w U(fN\S(f): p(x)=0},

where

1 xeU/NSS)
sgfix)=4—1  xeL(/\S(S),
0 x¢L(f)VUUSNSS).

Then there exists 1o>0 such that p+ Age M, (0 < i< 4).

Proof. (1) If xeA,, then sgngq(x)=sgf(x) so there exists a
neighborhood 4, of x such that

S g()=0 forall ted..

(2) For xe X;u X,, we consider two cases.

(a} If xe X3\ X,, then

. qlx+9) . oplx+9) plx—6)
R ey P S L -viouray s Sl L L O ooy st
Since
g(x +9)

S pre)
there exists 6, >0 such that
flx+6)g(x+8)=0 forall 0<d<9,.

And since

plx—4)

—_ O,

510 Bx—0)
Lemma 3.4 implies that there exist i,>0 and J,> 0 such that
Six=0)p(x—35)+ Ag(x—3)]=0 forall 0<d<dy, 0<Ai<<iy.

Hence, for x e X5\ X, there exist a neighborhood 4, of x and a number
Ao >0 such that

SOLp(1)+2g(1)]1 =20,  1ed,,0<i<4,.
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Similarly, if x € X,\X;, there exist a neighborhood 4, of x and a number
Ao >0 such that

S p(e)+Aq(1)]120, ted,,0<i<i,.

(b) If xe X;n Xy, then

. g(x+9) . g(x=9)
—_— d lim ————>0.
Jm a0 im0
Hence, there exists a neighborhood 4, of x such that
f(t)q(t) =0 forall red,.
(3) If xe S(S/)N\(X;u X,), then
p(x+9) . px=9)
—>0 d lim ——>0.
o dxro) M N enxe)

By Lemma 3.4, there exist a neighborhood 4, of x and a number i,>0
such that

FOLp(t)+2g(1)] =0, ted 0<i<ly.

Combining (1), (2), and (3), we have that, for any xe Ay, U S(f), there
exist a neighborhood 4, of x and a number 4,> 0 such that

SOLp(1)+4g(1)]120,  ted,,0<i<Ai,.

Let {[a;, b;1},.,
let 4,=(a,, b,), 1el Then for any re

be the set of all the intervals on which f vanishes. And
4., f(1)=0. So

iel

SO p(t)+Ag9(1)]1=0 for re()4,0<i<4,.

iel

Forte H=[a, b\N[(U, ¢ 4050 4:) v (U,e;4:)], we have p(7) #0.
Since H is a compact set, there exists i, > 0 such that

Ao lg(n)] < | p(1)| forall reH.

Thus
f()[p(t)+4Ag(t)] =0 for te H,0<A<4,.

But

fp()+4g(1)] =0 for te( U AX>U<UA,-),0<3.<).0.

xeAdguw S(S) iel



BEST COPOSITIVE APPROXIMATION 219

Hence,

p+igeM,, O0<i<iy. )

THEOREM 3.8. (The “Zero in the Convex Hull” Characterization). Ler
M be an n-dimensional Chebyshev subspace of Cla, b). Suppose that
feCla, b\M, My=span{d,,...d, .}, where ¢, .., €M |, 41
Let @(x)=Y7_"¢;(x) and

i=1

B= {U(X)(¢l(x)’ ey ¢n-m(x)) . X€ X:}

. ¢l(x+6) - ¢n7m(x+6) .
U {(511'11(')1* m, ey 6]21(}+ m) XeE X3}

: ¢1(X*6) : ¢n—m(x—5) .
\ {(él—l’n; m, ooy éhﬁn& m) X e X4}.

Then p is a best copositive approximation to f if and only if p£0 and the
origin of the (n — m)-dimensional Euclidean space belongs to the convex hull
of B.

Proof. (<) Suppose that p is not a best copositive approximation
to f. Then there exists p, e M, such that | f— p,|| <|f— pl.
Let g, € M, be chosen as in the proof of Lemma 3.6. Then

g(x)q,(x)>0 forall xeX ,uX_,.
Choose 4,> 0 so that
Ao |D(x)] < g, (x)] forall xeX,,uX_,.

Let g(x)=gq,(x)+ i, P(x). Choose 1 >0 small enough such that

(f—pi—Aqll <IS~pl.
Then we have that

(1) IfxeX, vX_, then
[f(x) = pi(x)— Ag(x)] < [ f(x) — p(x)|
= [f(x) = p(x)IL(f(x} = p(x)) = (f(x) — p1(x) — Ag(x))] >0
= [f(x)— p(x)]1[p(x) + Aq(x) — p(x)]>0.
Let A(x)= p,(x)+ Ag(x) — p(x). Then he M, and

a(x) h(x)>0, for xeX,  uX_,.
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(2) IfxeX,,uX_,, then

a(x) h(x) = o(x) pi(x) + Ao(x) g(x) = Ao (x) g(x) > 0.

Thus
o(x)hix)>0 for xeX,,uX_,.
(3) If xeX;, then
Im M: .
50 @(x+6)
Hence,
lim h(x+<3)= lim pi(x+8)+ Ag(x+6)— p(x + 5)
=0t Px+0) s-0¢ D(x+ )
A O ]
= 6111’& %{—g;+ A élij& ?q;_f%_)!_,_ Ahg 2 Ady > 0.
Therefore,

h(x +d)

AXT0) S0 forall xeX,.
st B(x40) orat xeds

{4) If xe X,, using a similar argument as in (3), we have

fim 1X=9)

5—»0‘m>0 for all xeX,.

Combining (1), (2), (3), and (4), we have that
a(x) h{x)>0 if xeXp,
h(x+9)
50 D(x + )
h(x — 6)
0+ Plx—23)

>0 if xelXs,,
>0 if xeX,.

Since XFu X;uU X, is compact, by the Theorem on Linear Inequalities,
the origin of R" ™ does not belong to the convex hull of B. This is a
contradiction.
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(=) Let p be a best copositive approximation to /. By Lemma 3.6,
p(x)#0. In the remainder of our proof, we shall show that the origin of
R"~™ belongs to the convex hull of B.

Suppose not, by the Theorem on Linear Inequalities, there is a ge M,
such that

o(x)q(x)>0 if xeXx},

q(x +6) .
A sre) 0 T oxeXs
. g(x—=9) )
ahj}+ ¢(x—5)>0 if xelX,.

Let ¢,(x)= p(x)+ Ag(x). By Lemma 3.7, there exists 4,>0 such that
g,e M for 0 <A< A,

On the other hand, by the continuity of the functions, there exist an
open set G X,,uX_, and 4, >0 such that

Aclg)l <|flx)—p(x)| and g(x)sgn[f(x)—p(x}]1>0 for xeG.
Hence, for xe G and 0 <4< 4,, we have
[/(x) —q:(x) = 1/(x) — p(x) — 4g(x)|
=sgn[ f(x) — p(x)1Lf(x) — p(x) — Ag(x)]
= |f(x)— p(x)| — Ag(x) sgn[ f(x) — p(x)]
<|f(x)=px) <1 f—pl.

For xe [a, b\G, [ f(x)— p(x)| < [if — pl.
Choose 4,> 0 small enough so that

)=l < f—pll forall xela b]\G,0<Ai<i,.
Let 4;=min{4,, 4,, 4,}. Then
4,€M; and If=aq: il <If—pl.

This contradicts the fact that p is a best copositive approximation to f. ||

DErINITION 3.9. Let x, yeX,,x<y, and (x, y1nS(f)={z, .. 2.},
v 20, where v=0 implies (x, y] N S(f)= . We say that f — p alternates
once in (x, y} if a(x)=(—1)"*'a(y).

THEOREM 3.10. Let feC[a, b\M. Then pe M, is a best copositive
approximation to f if and only if p(x)#0 and there exist n—m+1
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constants 2,>0,v=1,..,n—m+ 1, and n — m+ 1 distinct points {x,}° <
N - 1
XX o {x Ly sXnuXos, {x, }1<:N.+1CX3’ and {x, }”='f3;+1

c X,, where Ny = 1, such that

N3 . U+6
id(f) EREIED) A"alln(}*%(()i-ﬁ)—)

||[\/]?

r r=~Ni+1
n-m+1
. q(xv_é)
Ay ———— =
tY A dm S

v=Ny3+1
SJor all ge M.

Proof. (<) It is clear that the origin of R"~ ™ belongs to the convex
hull of B. By Theorem 3.8, p is a best copositive approximation to f.

(=) [If pis a best copositive approximation of f, then it follows from
Theorem 3.8 that p(x)#0 and the origin of R"~™ belongs to the convex
hull of B. By the Theorem of Carathéodory, there exist & constants A, >0,
v=1,..,k& and k points {x,}Y° X ,uX |, {x}) 1S X UX ,,
{x, = X;, and {x,}%5_, , ;< X, where k<n—m+1, such that

vfe=N+1
N N2
- . 2 q(x,+90)
> X, lim ————~
X A"U(Y“)q(”‘)Jr(,:%,‘ 520 B(x,+0)
+ i A lim M_O 1
v= N1+ 1 'U‘S_'O* ¢(xv—5)~ ( )

for all ge M,.

Let W= {x,..x,}={w, ., wy}, where w, < --- <w,, ko<k.

Next we shall show that kg=n—-m+ 1,

Suppose that ko<n—m. I f— p alternates once in (w, w,,,) for
some 1<i<k,—1, we choose s;e(w,w,,  N\S(f) Let Z,=
{s.€ (w,, w, . \S(f): f— p alternates once in (w;, w,, (), | <i<ko—1}. If
Z=7Z,0S8(f), then Z consists of at most ko— l+m<n—m—1l+m=
n—1 elements.

Now choose ge M such that g has simple zeros at the points of Z
and no other zeros. Choose Ai>0 so that ¢(x)#0 for all
xeUJr, w, wi+AJu . esin (2 2+ 4] We may assume that a(w,)= -
sgn g(w, +4) and (w,, w,1nS(={z,y, ., 2., }. If f— p alternates once
in (w,,w,), then o(w,)=(—1)""'g(w,) and g has simple zeros
Zyps e Z1ps §1 10 (Wy, w3 1. Thus sgn g(w, + A)=(—1)"*"'sgn g(w, + 1) and
hence

a(w,) =sgn g(w, + 4).
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If f—p does not alternate once in (w,,w,), then a(w;)=(—1)" a(w,)
and g has simple zeros z,,..z,, in (w,,w,]. Thus sgng(w,+ )=
(—1)"sgng(w, + 4) and hence
a(w,)=sgn q(w, + 4).
Similarly, we have
o(w;)=sgn q(w;+ 4), i=1, .., k.
Therefore
a(x,) q(x,)>0, v=1.,N,,

g(x,+9)
20, =N,+1,..,N,,
aln(}+ D(x,+d) v ! 2

. gqx,—9)
BX70) S0, p=N,+1,..k
Ry v=a

Choose 4,> 0 so that
ho 1B(x ) <lg(x)l,  o=1,., N,

Let go=¢g+ A, ®. Then g4 M, and
U(xv) qO(xv) > 0’ v= 1’ e Nl >

qO(xv + 6)

N, +1, .. N,
o0 D(x. +0) p=MNt 2

£

qO(xv - 5)
W79 0, v= N,k
S Bx,3) v=Natl

Therefore g, does not satisfy Eq. (1). So we have k=k,=n—m+ 1.
Let g, € M, be chosen as in the proof of Lemma 3.6. Then
o(x)q,{x)>0 forall xeX,,uX ,.
Choose 4,>0 so that
Ao 1P(x)] < lg,(x) forall xeX,,uX_,.
Let g, =¢q,+ 4,®. Then ¢g,e M, and
a(x)q,(x)>0 if xeX ,uX_,,

gx(x + ) .
61:1(}+ d>(x+5)>0 if xelXs,
. qz(x—é) .
>0 f X,.
A p—p) 0 T xeXs

Therefore No= 1. ||



224 JUN ZHONG

THEOREM 3.11 (The Alternation Theorem). Let feCla, b]\M and
pe M, Then p is a best copositive approximation to f if and only if p(x) #0
and there exist n—m+ 1 points w, < ... <w, . in X, such that f —p
alternates once in each (w,, w;, ), i=1,.,n—m.

Proof. (<) Suppose that there exist n—m+1 points w; < --- <
W, myy in X, such that f— p alternates once in each (w, w, ), i=
l,.,n—m. If p were not a best copositive approximation to f, by
Theorem 3.8 and the Theorem on Linear Inequalities, there would exist a
he M, such that

a(x) h(x)>0 if xepX, (2)

h(x+6) .

—>0 f xeX,, 3
o B(xt0) L rED (3)
. h(x-$6 .
5T?'E%;:S%>O if xekX,. (4)

Let
DZ(h)nX,=1d,,..d,} and  DZh) O Xy={dg, s dy ).
It is clear that there is a d,> 0 such that
(d;—dg,d) (X, Z(h)) =, i=1,..,k,
(d,, d;+0,) (X, Z(h))=, i=k+1,., k.
Now choose k,e M such that
SZ(hy)=SZ(h)v {d,, ... d,, d; 1, ... dy,}

U {dy = 80r o dy — 8o, iy 1 + Bgr o di, + o,
DZ(ho) = .DZ(h)\{dl, ceny dk’ dk+1’ ey dkl }.

Let g = ohy. Then we may appropriately select 6 =1 or 6 = —1 such that
k k)
sgn g(x) =sgn h(x), for xe[a, b]\ U di—b¢.d)yu | (di,di+6p).
i=1 i=k+1

Hence, from (2), (3), (4), and the fact that ¢ has simple zeros at the points
in X, u X,, we have

ag(x)q(x)>0 if xeX}, (5)
a(x)qg(x+8)>0 if xeX; 0<8<d,, (6)
o(x)g(x+6)>0 if xeX,,0<d8<K9,. (7)
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Choose 4> 0 sufficiently small so that

n—m+1

qg(x)#0 forall xe ) (w,w,+4].

i=1
Then, from (5), (6), (7), it follows that
ow)g(w,+4)>0, i=1,.,n—m+1 (8)

Let (w,w, ; 1nS(f)={z,1s . Zi,}» i=1,.,n—m. Next we shall show
that ¢ has at least v, + 1 zeros in (w;, w;, ;] counting a double zero twice.
In fact, from the fact that f— p alternates once in (w,, w,,,), it follows
that o(w,, )=(=1)"*"g(w,).
Suppose that g vanishes in (w,, w;,,] only at z,,,.., z;, and each of
these points i1s a simple zero. Then

sgn g(w, ., +A)=(—1)"sgn g(w,+ 4).

From (8), it follows that a(w;, )= (—1)"a(w;). This is a contradiction.
Thus ¢ has at least v;+ 1 zeros in (w;, w,,,] counting a double zero
twice.
Now assume that there are v elements in S{(f)\(w,,w,_,.,]- Then
v+ 372" v, =the number of elements in S(f)=m. Hence ¢ has at least

v +Z:’-’;‘;'" (v;+1)=n zeros in [a, b] and so ¢=0. This is a contradiction.
Therefore p is a best copositive approximation.

(=) Suppose that p is a best copositive approximation to f. By
Theorem 3.10, there exist n—m+ 1 constants 1,>0, v=1,.,n—m+ 1,
and n—m+1 distinct points {x,}° <X ,uX |, {x}My,.

X 00X o, {x 32y X5, and {x,}i2%%] = X,, where No> 1, such
that

N o

. . g(x,+6)

Y i.o(x, 4, lim =
Ao(x)g(x,)+ Y Rt P(x,+9)

v=1 v=N+1
n—m+1
. g(x,—9)
+ 4, im L2 _p
u:%+] 60" ¢(xl._6)

for all ge M.
Let W={x, Xy _ms1) ={Wis s Wy_mas1}, Where w <...<
W, _m+1. Then f— p alternates once in each (w,, w,,,), i=1,.,n—m+ 1
In fact, if f — p did not alternate once in some (w,, w; ., ), 1 <ip<n—m,
let

ipy Mig+ 1

Zy={s,€(w;, w,, )\S(f): f— palternates once in

(Wi, wi), 1<i<n—m}.

640:/72:2-7
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If Z=Z,0 S(f), then Z contains less than (n—m)+ m = n elements.

For the remainder of our proof, using the same argument as the
necessary part of Theorem 3.10, we will reach a contradiction. [}

4. UNIQUENESS OF BEST COPOSITIVE APPROXIMATIONS

LeMMa 4.1. If ge M\{0} has n—1 simple zeros in (a, b), then

al_i.n(l ;L(zz% #0 and Jim %((Z—;% #0
Jor all ze S(f).
Proof.  Suppose
g(zo+96)

Jim, <I5(20+5)_0 for some z,eS(f).
Since ge M, has n— 1 simple zeros in (a, b), there are x, < --- <x, In
{(a, b) such that

q(x;) q(x;,,)<0 for i=1,..,n

Assume that z,e(x;_;, x,) and, without loss of generality, assume that
both ¢ and & are positive in the interval (zy, zo+ 4) for some suitable
A>0.

Choose o >0 small enough such that

a |D(x,;)| < lg(x,) for i=1,.,n
We have
lim U=XP)Etd)_ g
s—04 P(zy+9)
so (g—aD)(y)<0 for some ye(zy, min{(zq+ 4), x;}. But then g—ad
has a weak alternation of length n+2 in x, .., X, |, 2o, ¥, X4, w0 X,,, @
contradiction. |

LEMMA 42, Let 4,>0, v=1,..,n—m+1 be n—m+ 1 distinct con-

stants, let {xl, 9":1CX;,"(N1>1), {xv}f,viNl+lCX3, and {x”}g;'an-:»lICX“

be n—m+ 1 distinct points satisfying

M N2 (x,+96)
Ao(x,) q(x,)+ A, lim 2T
vgl x7=%+1 s—0r P(x,+ )
n—m+1
. g(x,—9)
+ A, lim ———=
BN T

for all ge M.
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If ge M, satisfies
q(x,) =0, v=1,.., N,

g(x,+90)

50+ D(x,+06) v=NiA L N,

q{x,—9d)
ax. o) g “ N+ 1, n—m+1.
A px ) > =Nt l.n—md

Then q=0.

Proof. (1) If Ny=n—m+1, then ¢q(x,)=0,v=1,.,n—m+ 1.

227

9

(10)

(11)

Since x,€e X}, v=1,.,n—m+1, x,¢S8(f)={z,, .., z,,}, but g(z,)=0,

i=1,..,m. So g has n+ 1 zeros and thus g=0.

(2) If N,<n—m+ 1, assume that ge M, satisfies (9), (10), and (11),

but g #0. Let
DZ(q) N {Xp 11y o Xny = {1y s diy ),

DZ(Q) a {xNz+l’ R xn—m+l} = {dh +13 o d/)}’
DZ(q)\{dl, eeny dll’ dll+1’ aeey dll} = {d12+ Ly ooy dlS}’
SZ(g)= {5, - Sk }-

Then k+2l,<n—1.
Choose 6, >0 such that

1)
g(x)#0  for xE_U [(d;—do, di+ 3o\ {d:})]

i=1

k

U U [(s;~ 80, $i+ 0o\ {5:})].

i=1

If

U=m00{Xy, 4 15 s Xnys XNyt 15 o Xmt 1§

then ue(q, b).
Choose [ =n—1—k — 21, distinct elements ¢, ..., ¢, in

5 k
(a, u)\ [(d)= 30, di+80)] U U [(51= 800 5+ 80)1.
i=1 =1

= i=

If
T= {Sl, ceey Sk’ tl’ seny t[, dl’ ey d/g’ d] —60, veey d[l _60, d[l*l

+ 60, vesy d[z + (So, d12+| + (30, oeey d[] + 50},

then T has k + /4 2/;=n— elements.
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Choose g€ M such that g,(x)=0 for all xeT. Let ¢, = oq, and select
o= 41 or —1 appropriately so that

Sgnq('xv+50)=5gnql(xv+50)’ D=N1+11---’ N2a
sgn g(x,— dy)=sgn q,(x,— dy), v=N,+1,.,n—m+1.
Choose 1, >0 such that

A’O(ql(xv+50)l<lq(xv+50”’ U=N\+l’---a N29 (12)
Ao 1q1(x, — o)l <lg(x, —do)i, v=N,+1, ., n—m+1 (13)

If g,=q—A¢q,, then ¢, Z0 and Z(q) = Z(g,). So g, € M,.
Since g, has n— 1 zeros, by Lemma 4.1,

ho*%;eo forall zeS(f).
Hence,
élirg+qq—l(§%=0, b=N, +1,., N,
im 2579 o N+l myl
§-0% q,(x,—9)
Thus,

q2(xv+5) —
220" q,(x, +9)

m qZ(xv_é)
-0 ql(xv_é)

—dey v=N,+1,., N,

= —4o, v=N,+1, ., n—m+1.
Therefore there exists 0 <d, <&, such that
sgn g>(x,+9d,)= —sgn q,(x,+6,) = —sgn q(x, + d),
v=N,+1,., N,
sgn g»(x, —9d,)= —sgn g,(x,—9d,) = —sgn g(x, — ),
v=N,+1, ., n—m+1.
But from (12) and (13), we have
Sgan(xr+50)=sgn q(xu+60)’ v=N1+li"" NZ
sgn g,(x, — 8,) = sgn g(x, — 8,), v=N,+1,.,n—m+1.
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So g, has at least one zero in each (x,+,, x,+J;), v=N,;+1,.., N,, and
each (x,— 8y, x,—6,), v=N,+1,.,n—m+ 1. But g, M, and

q2(x,}=0, v=1,.,n—m+1.

Thus g, has N+ (n—m+1—-N,)+m=n+1 zeros and ¢g,=0. This is a
contradiction. |

THEOREM 4.3 (Strong Uniqueness). Let pe M, be a best copositive
approximation to f € Cla, b]. Then there is a positive constant r=r(f) such
that

If=ql=1f—pl+rip—ql
for all qe M,. In particular, best copositive approximations are unique.

Proof. Let peM, be a best copositive approximation to f By
Theorem 3.10, there exist 4,>0, v=1,.,n—m+1, and {x,}) c

N N —m+1
X uX X i 1 SX U X o I n o S X (X020 < Xy,
where N> 1, such that

No Ny
Z ;'l‘a(xv) ‘I(XU)+ Z lva(xu) q(xu)
v=1 v=~No+1
g(x,+0) " &} g(x,—9)
Ay im ————>=0 14
*}=§+1 550" B(x, +0) +6{ﬂ_§+1 C ot B(x,—9) (14)

for all ge M.
Let

H= {quO co(x,) q(x,) <0, v=Nyg+ 1, .., N

q(x,+98)

<0, 0=N,+1,.. N,
o B, r o) ST 2

lim 4= d)

<0 v=No+1,on—m+1L,
RN yromy T "m+}

Obviously, for all ge M, —g e H, so H\{0} # .
Suppose there is a ge H\{0} with a(x,) q(x,)<0, v=1, .., N,.
By (14), we have
q(xv)=03 U=1,..., Nl’

g(x,+9)

Lo T = 1, ..
M B a0 VTN

q(x,—3d)

lim

= = L.,n— 1.
A0 Bx.—9) 0, v=N+l, ., n—m+
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By Lemma 4.2, ¢=0. This contradicts the fact that ¢ #0. Hence, for all
ge H\{0}, there exists we {1, .., Ny} such that a(x,) g(x,)>0.
Since Hy={gqe H : |q|l =1} is compact,

r=inf{ max a(x,)q(x,):lqll=1,9€H}>0.
N

l€sv< Ny

If ge M, and g # p, then p—qge H. Therefore, there exists voe {1, .., Ny},
such that

Plxy) = alxy)

A P

It follows that
r ”P - ‘I” < U(xvo)[p(xuo - q(xvo)]
= 0(x,))[f(x00) — q(x,))] — a(x,,) [ f(xs) — P(x,,)]
s<hf—agl = If-pll.

Therefore,

If=gqlzlf=pli+rip—ql
for all ge M,. |

For every f'e C[a, b], let ©(f)e M, be the best copositive approximation
to f. Unlike in the classical theory, this best copositive approximation
operator is no longer continuous. An example showing this fact can be
found in [9].

However, if we define

We=1{feCla,b]:r(f)e Mg},

then a similar argument to the one in the classical case [1, p. 82] implies
the following continuity theorem.

THEOREM 4.4. To each foe Cla, b] there corresponds a number 4>0
such that for all fe W,

Itfo—tfli<ANfo— Sl

5. CoMPUTATION OF BEST COPOSITIVE APPROXIMATIONS

In this section, we suggest a method for computing the best copositive
approximation. This method is based on converting copositive approxima-
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tion to restricted range approximation, and then applying the algorithm
developed for restricted range approximation to copositive approximation.
A direct algorithm remains to be developed.

For fe Cla, b]\M, let gy, .., g, € M, be k linearly independent elements
so that

span M, =span{g,, .., 8}

Throughout this section, we shall assume that f does not vanish on any
subinterval of [a, b].

If p is the best copositive approximation to f, then || f— pl < )| f| and
thus [ipll <2If]l.

Let

k
D={(€1, s Cx)€ R | g(x)= _Z c: g:(x), g <2 Ilfll},

i=1

r'e
C= max max |c¢| and G(x)= Y gi(x)

(¢}, Ch)ED 1 KiKk i=1

Define

CG(x) if xeU(f)

otx) = {0 if xeL(f)

and

0 if xeU(f)

IO(X):{CG(x) it xeL(f).

It is easy to check that u,, l,e C[a, b]. Let u(x)=max(uy(x), f(x)),
Hx)=min(ly(x), f(x)) and K,={ge M |l(x)<qg(x)<u(x), xe[a, b]}. It
is clear that u, /e C[aq, b], l(x)< f(x)<u(x) and K, M,.

THEOREM 5.1. Let f€ Cla, b]. If f does not vanish on any subinterval of
[a, b], then the best copositive approximation to f is the same as the best
approximation to f from K, = {ge M | (x}<q(x)<u(x), x€ [a, b] }, where
u(x) and I(x) are defined as above.

Proof. The proof is fairly easy. It is left to the reader. [

Let K,,= {ge M | l(x) < g(x)<u(x)+ 1/m}, where m is an integer.
Define

€m= “f‘PmH =qienl£ “f_q“
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and
e=|f—pl=inf | f—gql.
qe Ky

Then we have the following theorem.

THEOREM 5.2. (a) p,.(x) converges uniformly to p(x) as m — oc.
(b) € T €.
Proof. Since pe K, K,,,, we have that

me

en=lIf—pul<lf—pl=e foralm.
And since M,,, ,c M,

=Pl <If =P ill=e, 1.

Thus {e,,}_, is a monotone increasing sequence bounded by e.

Let {p,} be any subsequence of {p,}. Since Hx)<p,(x)<
u(x)+ 1/n, { p,} is uniformly bounded. Therefore there exists a subsequence
{pn} of {p,} so that it converges uniformly to an element p*€ K,.

Let e* = f — p*||. We shall show that e* =e.

In fact, it follows from p* € X, that

e=[f—pl<If—p*ll=e* (15)

On the other hand, since p, converges uniformly to p*, | f—p,|l —
I/ = p*|. Thus

e*=|f=p*=lm |f=p,l=lim e, <e. (16)

Combining (15) and (16), we have e=¢*.

By the uniqueness of best copositive approximation, we have p= p*.
This means that any subsequence of {p,,} contains a subsequence which
converges uniformly to p. Hence p, converges uniformly to p. Conse-
quently, we have e,,Te. |}

A Remes’ type algorithm for computing p,, and e,, has been developed
by Taylor and Winter in [13]. Now since one may compute p,, and e,
and since p,(x)— p(x) uniformly and e, te, we have obtained an
algorithm for computing p and e.
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