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A theory of best copositive approximation including a "zero in the convex hull"
characterization, alternation theorem, and strong uniqueness theorem is developed
for a general n-dimensional Chebyshev subspace in C[ a, b]. In addition, a
computational algorithm is discussed. ,:n 1993 Academic Press, Inc

1. INTRODUCTION

The purpose of this paper is to develop a theory for best uniform
copositive approximation of continuous functions. Specifically, given a
function IE C[a, bJ and an n-dimensional Chebyshev subspace M of
C[a, bJ, we study

inf{ III - qll : q EM and I(x) q(x) ~ 0, X E [a, b]}.

The concept of best copositive approximation was introduced by Passow
and Raymon in 1974 [4], where they showed that the best copositive
approximation is unique if M is a subspace of all algebraic polynomials of
degree ~ n - 1. Moreover, they obtained a Jackson-type theorem for the
degree of copositive approximation to I when I is a proper piecewise
monotone function. Some other people [3,6, 14] have also investigated
this aspect. In the other direction, in 1975 Passow and Taylor [5]
developed an alternation theory in the case when I does not change sign on
any interval and M is an n-dimensional extended Chebyshev subspace
of C[a, b] of order 3. As a consequence, they obtained a "zero in the
convex hull" characterization when the derivative of the best copositive
approximation to I is nonzero at the points that I changes sign. This
second result was extended by Shi [9] to the case that the sign changes of
I are allowed on intervals but still the derivative of the best copositive
approximation to I is nonzero at the points that I changes sign. In 1986
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Zhong [15] obtained a "zero in the convex hull" characterization theorem
and an alternation theory under only the condition that M is an n-dimen­
sional extended Chebyshev subspace of C[a, b] of order 2. Also Zhong
showed that the best copositive approximation is strongly unique.

However, for the case where M is a general n-dimensional Chebyshev
subspace of C[a, b], neither a "zero in the convex hull" characterization
nor an alternation theory has been developed for the best copositive
approximation. Besides, the uniqueness of best copositive approximation
for this general case has not been known. In this paper, we give affirmative
answers for the above problems. In Section 2 we give the definitions, nota­
tions, and basic facts that shall be used throughout this paper. In Section 3
three characterizations of best copositive approximations are established.
A strong uniqueness theorem and the continuity of the best copositiv6
approximation operator on a subset of C[a, b] are developed in Section 4
and a computational algorithm is discussed in Section 5.

2. DEFINITIONS, NOTATIONS, AND BASIC FACTS

Let M be an n-dimensional Chebyshev subspace of C[a, b], i.e., every
nonzero element of M has at most n - 1 zeros. Let f E C[a, b] and define
M(= {pEM:p(x)f(x)~Ofor all xE[a,b]}. If pEMfhas the property
that

Ilf - pll =inf{llf -qll : qEMA,

where IIhll = max{ jh(x)1 : XE [a, b]}, then we say that p is a best copositive
approximation (from M f ) to f

Let L(f)= {XE [a, b] :!(x)<O}, V(f)= {XE [a, b] :f(x»O}, and
S(f) = L(f) n V(f), where the bar denotes point set closure in the reals.
We say that f changes sign at t E (a, b) if and only if t E S(f). On the other
hand, we say that f changes sign on the interval [c, d] c (a, b) if and only
if t E [c, d] implies that f( t) = 0 with CE V(f) and dE L(f) (or c E L(f) and
dE V(f).

For f E C[a, b], let the sets SZ(f) and DZ(f) of "simple" and "double"
zeros be defined by Z(f)={xE[a,b]:f(x)=O}. DZ(f) = {XEZ(f):
there exist u, v E [a, b] with u < x < v such that f has constant nonzero sign
on [u, v]\{x}}, and SZ(f) = Z(f)\DZ(f).

Denote the cardinality of a set A by card(A).

THEOREM 2.1 (See [16, p. 24]). Let M be an n-dimensional subspace
of C[a,b]. Then M is Chebyshev if and only if card(SZ(q»)+
2 card(DZ(q)"; n - 1 for all q E M\ {O}.
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I
. p(x-b)
1m

o~o+q(x-b)

THEOREM 2.2 (See [16, p. 25]). Let M be an n-dimensional Chebyshev
subspace of C[a, b], and Sl' ... , Sk' d" ..., diE [a, b] distinct points with Sl <
S2< ... <Sb a<d, < <d{<b and O~k+21~n-1. Then there is a
q EM with SZ(q) = {s" , sd and DZ(q) = {d

"
..., d{} if at least one of the

following conditions holds:

(a) n - (k + 21) is odd;

(b) a<st,sk<b;

(c) a=s"sk=b.

COROLLARY 2.3. If M is an n-dimensional Chebyshev subspace of
C[a, b] and z" ..., Zm are m (~n -1) distinct points in (a, b), then there is
a q EM such that q has simple zeros at these points and no other zeros.

If the number of elements in S(f) plus the number of times f changes
sign on intervals is greater than or equal to n, then for any q E M j , q has
at least n zeros, so q(x) = 0, therefore M j consists of just the zero function.

If the number of elements in S(f) plus the number of times f changes
sign on intervals is less than n, let z I' ... , Zm be all the points at which f
changes sign and [zm+',um +,], ..., [ZN' UN] denote all the intervals on
which f changes sign. Then by Corollary 2.3, there is a q E M such that q
has simple zeros at Z t, ... , Zm' Zm + t , ... , Z N and no other zeros. Thus q or
- q E Mr. Hence M f contains nontrivial functions.

Thus, throughout this paper, we always assume that the number of
elements in S(f) plus the number of times f changes sign on intervals is less
than n. Let S(f) = {z t , ... , Z m}, where 0 ~ m < n.

To conclude this section, we state two well-known theorems.

THEOREM 2.4 (Theorem on Linear Inequalities [1, p. 19]). Let U be a
compact subset of Rn. Then there exists a Z E Rn so that (u, z) > 0 for all
u E U if and only if the origin of Rn does not belong to the convex hull of U.

THEOREM 2.5 (Theorem ofCaratheodory [I, p. 17]). Let A be a subset
of an n-dimensional linear space. Every point of the convex hull of A is
expressible as a convex linear combination of n + I (or fewer) elements.

3. CHARACTERIZATION OF BEST COPOSITIVE ApPROXIMATIONS

LEMMA 3.1. Let M be an n-dimensional Chebyshev subspace of C[a, b].
Then for any p, qEM\{O} and XE [a, b],

I
. p(x+b)
1m and

o~o+ q(x+b)

always exist as extended real numbers.
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. p(x+b)
hm sup ( ~ = {J,
b~O+ q x+u)

Proof Without loss of generality, we may assume that q(x + b) > 0 for
O<b~bo'

Suppose we have

I
· . fP(x + b)1m In = IX,
b~O+ q(x+b)

and IX < /3.
Let IX < Y< {J. Then there exist strictly decreasing sequences bk - 0+ and

Ck -> 0 + such that

Hence, there exists N>°such that

and
p(x + cd

>y
q(x + Ck)

for all k ~ N.

Thus, p(x + bd - yq(x + bd < 0 and p(x + ck ) - yq(x + Ck) > 0 for all k ~ N.
So p - yq has more than n zeros and thus p == yq, which contradicts IX < {J.
Hence, r:x = {J. That is,

I
. p(x+b) .
1m eXIsts.

b~O+ q(x +b)

Similar, we have

. p(x-b) .
hm b eXIsts. I
b~O+ q(x - )

LEMMA 3.2. Let fEC[a,b] and Mo=={qEM:q(x)==O,xES(f)}.
If Z I' ... , Zm are all the points at which f changes sign and
[Zm+I,Um+I]"",[ZN'U N] (N~n-l) are all the intervals on whichf
changes sign, then there exist ifJl, ... , ifJn-m E M o and boE

(max{zl' ..., ZN, Um+ l' ... , UN}, b] such that l/Ji E M f I[a.bol (i.e. I/J;(x) f(x) ~°
for all XE [a, bo], i= 1, ..., n-m) and Mo=span{ifJj, ..., ifJn-m}'

Proof Since S(f) = {z I' ..., Zm} consists of m distinct points, the
dimension of M o is n-m. Choose {z;}7:~+1 and {ui}7:~+1 in
(max{zl"",ZN,Um+I, ...,uN},b] so that

Select ifJ;EM\{O}, i=m+l, ...,n-l, such that

for J=I, ...,i-l,i+l, ... ,n-I.



214 JUN ZHONG

Hence ~ichanges sign at Z[""'Zm, Zm+I""'Zi_[' Ui'Zi+I""'Zn_I' Also,
we choose ~n E M\ {O} such that ~n(Zi) = 0, i = 1, ..., n - 1. It is clear that
we may assume

~i(x)f(x)~O, for all XE [a, ZN+ I)' i=m + 1, ... , n.

Next we shall show that ~m + I' ... , ~n are linearly independent. Assume that

Since tP i (zJ ;= 0 for i = m + 1, ..., n - 1, and

ci=O, i=m+l, ... ,n-1. So cntPn=O and thus cn=O. Therefore
tPm+I, ... ,tPn are linearly independent. Let bO=ZN+l' Then tPiEMll[a.boJ'
i = m + 1, ... , n, and M 0 = span {tPm + I' ... , ¢>n}' This completes the proof. I

LEMMA 3.3. Assume that Mo=span{tPl, ..., ¢>n-m}, where tPl, ..., tPn-mE
MJ I[a.boJ· Let tP = 'L7:;' ~i' Then for any hE M o, there is a Ao> 0 such that
tP + Ah E Mll [a.boJ for 0 < A~ Ao.

Proof Since Mo=span{tPl, ...,tPn-m} for any hEMo, we may write

h = L7:;' aitPi' Hence,

n-m
tP + Ah = L (1 + Aa j) tP j'

;= I

Choose ,.1.0> 0 small enough so that 1 + ),ai > 0, i = 1, ..., n - m. Then

tP + ),h E MJ I[a.boJ for 0 < A~ ,.1.0' I

LEMMA 3.4. If, for some x E S(f) and p E MJ ,

I
· p(x + b) 01m >

J ~ 0 + tP( x + b)

then for any hE M o, there exist Ao> 0 and 15 0 > 0 such that

f(x+ b)[p(x+ b) + Ah(x +15)] ~O (or f(x-b)[p(x-b)+Ah(x-b)]~O)

for allO<A~Ao andO<b<bo·

Proof Without loss of generality, we may assume that f is increasing at
x E S(f). Since

I
· p(x+b) 0
1m > ,

J~O+ tP(x+b)
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there exists )" > 0 such that

I· p(X+6) 10
1m >11.» .

b _ O· <1>(x + 15)

So there exists 15 0 > 0 such that

215

for 0<15<150 ,

By Lemma 3.3, for any hEM0, there exists A2 > 0 such that

so

Letting ,10 = }'1).2' we have

f(x + 6)[p(x + (5) + Ah(x + (5)] ~ 0

LEMMA 3.5. Let Mo=span{tP" ...,tPn_m}, "'here tPI, ... ,tPn-mE
M f [[a.hoJ' and <1>(x) = L,7':lm tP;(x). Then

and I
· tP;(x -15) I
1m <

b_O+ <1>(x - (5)
for any XE S(f).

Proof Without loss of generality, we may assume that tP;(x + (5) > 0 for
0<15 < 15 0 , i = 1, ..., n - m. Then we have

n-m
<1>(x + (5) = L tPi(X + (5) ~ tP;(x + (5)

i= I

so

and thus

Similarly, we have

I· tP;(X-6):<1 I1m ~ .
b_O+ <1>(x-15)

Throughout this paper, we always assume that M 0 = span {tP J, ... , tPn _m},
where <PI' ..., <Pn-m E Mfl [a.boJ and bo is as in Lemma 3.2. Let <1>(x) =
L:7':lm tP;(x).
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For p E Mr , define

X +1 =X+I(P)= {XE [a, b] :f(x)- p(x)= Ilf - pll}

X_I = X-I (p) = {x E [a, b] : f(x) - p(x) = - Ilf - p II }

X +2 = X +2(P) = {x E U(f)\S(f) : p(x) = 0, If(x)1 < Ilf - pll}

X 2= X 2(P) = {x E L(f)\S(f) : p(x) = 0, If(x)1 < Ilf - pII}

{
. p(x+b) }

X 3 =X3(P)= XES(f): hm =0
b-O' cf>(x+b)

{
. p(x-b) }

X 4 =X4(P)= XES(f): hm ( -,)=0
b-O+ cf> x-v

X;=X+ 1 uX_ 1 uX+ 2UX_ 2

X;*=X3 UX4

Xp=X;uX;*

{

I
-1

a(x) =
sgn cf>(x + 15 0 )

if XEX +1 uX +2

if x E X_I U X _ 2

if xEX3 uX4 ,wherecf>(x+b)-=f.0

for all O<b",;;bo.

LEMMA 3.6 (See [15]). Let fEC[a,b]\M. Then the best copositive
approximation to f is nonzero.

Proof Assume that p(x) =0 is a best copositive approximation to f
By the Ko1mogorov criterion, we have

max (-q(x»f(x)~O
XEX+IUX_l

for all q E MI'

Let Z I' ... , Z m be all the points at which f changes sign and
[Zm+I' um+I], ... , [ZN' UN] (N",;;n-I) denote all the intervals on whichf
changes sign. Let t; E (z;, u;), i = m + 1, ..., N. Choose qo E M such that qo
has simple zeros at Zl' ... , Zm, tm+ 1, ... , t N and no other zeros. Set q 1 = aqo
and select a = +1 or - I appropriately so that q 1 E MI' It is obvious that
for any XE X +1 uX-I' xrt {ZI' ..., Zm' tm+I' ... , t N }· Since If(x)1 = Ilfll > 0
for all XEX+1UX_ 1 , ql(x)f(x»O for all XEX+1UX_ 1. Thus
max¥E x +1 u X-I ( - q 1(x) f(x) < O. This is a contradiction. I

LEMMA 3.7. Let pEMI\{O}. Suppose qEMo satisfies

1· q(x+b) 0 fi l' q(x-b) 0
1m > or x E X 3, 1m >

b-O+ cf>(x+b) b-O+ cf>(x-b)
for XEX4 ,
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sgn q(x) = sgf(x)
where

if xEA o = {xEL(f)u U(f)\S(f): p(x)=O},

X E U(f)\S(f),

x E L(f)\S(f),

x rt L(f) u U(f)\S(f).

Then there exists Ao > 0 such that p + Aq E M( (0 < A~ Ao).

Proof (I) If xEA o, then sgnq(x)=sgf(x) so there exists a
neighborhood d, of x such that

f(t) q(t) ~ 0 forall lEd,.

(2) For XEX 3 UX4 , we consider two cases.

(a) If XEX 3\X4 , then

,. q(x + b)
1m >0,

J~O' (/)(x+(5)

Since

\
. p(x+(5)
1m =0

J~o' (/)(x+(5) ,

\
. q(x+o)
1m >0,

J~O+ (/)(x+15)

and \
. p(x-J) 0
1m > .

J~O' (/)(x-15)

there exists 15 0 > 0 such that

And since

f(x+b)q(x+b)~O forall O<b~Jo.

I
· p(x-b) 0
1m > ,

J~O+ (/)(x-J)

Lemma 3.4 implies that there exist Ao> 0 and bo> 0 such that

f(x - b)[p(x - b) + Aq(x - b)] ~ 0

Hence, for XEX3\X4 , there exist a neighborhood d, of x and a number
).0> 0 such that

f(t)[p(t) + ;.q(t)J ~ 0,
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Similarly, if x E X 4\X3 , there exist a neighborhood L1 x of x and a number
)'0> 0 such that

f(t)[p(t) + ).q(t)] ~ 0,

I
, q(x+J) 0
1m >

b ~o+ cP(x + b)
and I

, q(x-J) 0
1m > ,

b~O+ cP(x-J)

Hence, there exists a neighborhood L1,. of x such that

and

f(t) q(t) ~ 0

(3) If XES(f)\(X3 UX4 ), then

J
' p(x+J) 0
1m >

,hO+ cP(x+J)

for all t E L1 x '

I
, p(x - J) 0
1m > ,

b~O+ cP(x-J)

By Lemma 3.4, there exist a neighborhood L1 x of x and a number Ao> 0
such that

f(t)[p(t) + Aq(t)] ~ 0,

Combining (J), (2), and (3), we have that, for any xEAouS(f), there
exist a neighborhood L1 x of x and a number ,1,0> 0 such that

f(t)[p(t) + ).q(t)] ~ 0,

Let {[a;, b;]LEI be the set of all the intervals on whichfvanishes, And
let L1;=(a;,b;), lEI. Then for any tEU;ElA;,f(t)=O, So

f(t)[p(t) + Aq(t)] ~ 0 for tEUL1;,O<).~Ao'
j E I

For t E H = [a, b ]\[(UXCAOUS(f) AJ u (U;E I L1;)], we have p(t) '" 0,
Since H is a compact set, there exists )'0> 0 such that

Thus

But

,1,0 Iq(t)1 < Ip(t)1

f(t)[p(t) + ).q(t)] ~ 0

for all t E H.

f(t)[p(t) + ).q(t)] ~ 0 for tE( U L1 x )u(U L1;),O<A~).o'
x E Ao U S(j) ; E I
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THEOREM 3.8. (The "Zero in the Convex Hull" Characterization). Let
M be an n-dimensional Chebyshev subspace 01 C[a, b]. Suppose that

IE C[a,b]\M, Mo=span{tPt, .. ·,tPn-m}, Yo'here tPl, ... ,tPn-mEMfl[a,ho]'
Let (/J(x) = L:7,:-t ¢I,(x) and

B= {a(x)(¢II(x), ..., tPn-m(."»: XE X;}

{( 1· ¢I1(x+lJ) I' ¢In_m(X+/)) X}
U 1m , ... , 1m : x E 3

b-O+ (/J(X+/) b-O+ (/J(X+lJ)

{(
. ¢I1(x-lJ) . tPn_m(X-lJ») }

u hm,.... ~)' ..., hm ( ~ : x E X4 .
b-O+ 'P(X-V b-O+ (/J x-v)

Then P is a best copositive approximation to I if and only if P~ 0 and the
origin of the (n - m )-dimensional Euclidean space belongs to the convex hull

01 B.
Proof (<=) Suppose that p is not a best copositive approximation

to f Then there exists PI EMf such that III - PIli < III - pil.
Let ql EMf be chosen as in the proof of Lemma 3.6. Then

for all x E X + 2 U X - 2'

Choose Ao> 0 so that

for all x E X + 2 U X _2'

Let q(x) = ql(X) + )'0 (/J(x). Choose A> 0 small enough such that

III - PI-Aqll < 1If- pil.

Then we have that

(l ) If x E X + I U X _ I' then

I/(x) - PI(X) - Aq(x)1 < I/(x) - p(x)1

=> [f(x) - p(x)][(f(x) - p(x» - (f(x) - Pl(X) - Aq(X»] > 0

=> [f(x) - p(x)] [PI(X) + Aq(X) - p(x)] > O.

Let h(x) = Pl(X) + Aq(X) - p(x). Then hE M o and

a(x) h(x) > 0, for x E X + I U X _ I .
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a(x) h(x) = a(x) PI(X) + Aa(X) q(X) ~ Aa(X) q(X) > 0,

a(x) h(x) > 0

(3) If XEX3 , then

for XEX+ 2 UX_ 2 ,

Hence,

I
, h(x+J)
1m

,,~O+ cP(x+J)

Therefore,

lim p(x + J) = O.
b~O+ cP(x+b)

I
, Pt(x+J)+J.q(x+b)-p(x+J)
1m

b~O+ cP(x+b)

I, [Pl(X+J) ,(ql(X+J) 1) P(X+b)]
= 1m +A +1'-0 -

b ~ 0+ cP(x + J) cP(x + J) cP(x + b)

I, PI (X + b) 1 I' q l (x + f> ) 1 • , , 0= 1m + A 1m + AAo~ AAO > .
b~O+ cP(x+J) b~O+ cP(x+f»

I
, h(x +J)
1m >0

b~O+ cP(x+J)
for all x E X 3 '

forall XEX4 •

(4) If x E X4 , using a similar argument as in (3), we have

I
, h(x-b)
1m >0

b~O+ cP(x-b)

Combining (1), (2), (3), and (4), we have that

a(x) h(x) > 0 if XEX:,

r h(x+b) 0
if XEX3 ,1m >

b ~o+ cP(x + 0)

r h(x-o) 0
if XEX4 ,1m >

b~O+ cP(x-f»

Since X: U X 3 U X 4 is compact, by the Theorem on Linear Inequalities,
the origin of R" - m does not belong to the convex hull of B. This is a
contradiction,
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(~ ) Let p be a best copositive approximation to f By Lemma 3.6,
p(x) ~ O. In the remainder of our proof, we shall show that the origin of
W - m belongs to the convex hull of B.

Suppose not, by the Theorem on Linear Inequalities, there is a q EM0

such that

a(x) q(x) > 0 if XEX;,

r q(x + 15) 0 if XEX3 ,1m >
b_O+ ct>(x+t5)

r q(x-t5) 0
if XEX4 •1m >

b_O+ ct>(x - 15)

Let q;.(x) =p(x) + ).q(x). By Lemma 3.7, there exists )'0> 0 such that
qAEMffor O<A~Ao·

On the other hand, by the continuity of the functions, there exist an
open set G:::::> X + I V X _ I and AI > 0 such that

A1Iq(x)1 </f(x)-p(x)1 and q(x)sgn[f(x)-p(x)]>O for XEG.

Hence, for XEG and O<,(~).l' we have

If(x)-qA(X)i = I/(x)- p(x)-).q(x)1

= sgn[f(x) - p(x)] [f(x) - p(x) - ).q(x)]

= I/(x) - p(x)l- ).q(x) sgn[f(x) - p(x)]

< I/(x) - p(x)1 ~ III - pll.

For XE [a, b]\G, I/(x)- p(x)1 < III - pll.
Choose ,(2) 0 small enough so that

I/(x) - qA(X)/ < III - pll for all XE [a, b]\G, 0 <). ~ ).2'

and III - q;.) II < III - pll·

This contradicts the fact that p is a best copositive approximation to f I

DEFINITION 3.9. Let X,YEXp,X<Y, and (x,y]nS(f)={zl""'Zv},
v ~ 0, where v = 0 implies (x, y] n S(f) = 0. We say that 1- p alternates
once in (x, y) if a(x) = (-1)"+ I aCYl.

THEOREM 3.10. Let IE C[a, b]\M. Then p EMf is a best copositive
approximation to I if and only if p(x) ~ 0 and there exist n - m + 1
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constants ).... > 0, v = 1, ... , n - m + 1, and n -m + t distinct points {xJ~~ Ie
X+IUX_ I , {X',}~~No+leX+2UX-2' {X'}~:NI+leX), and {x,,}::~,++\
eX4 , where No ~ I, such that

N I ~

I A... o-(X..} q(x..} + I
1'= 1 v=NI + 1

o

for all q E Mo.

Proof ( <== ) It is clear that the origin of R" - m belongs to the convex
hull of B. By Theorem 3.8, p is a best copositive approximation to f

(=> ) If p is a best copositive approximation off, then it follows from
Theorem 3.8 that p(x);t: 0 and the origin of R"- m belongs to the convex
hull of B. By the Theorem of Caratheodory, there exist k constants )" > 0,
v=1, ... ,k, and k points {X"};~~ICX+IUX_l' {X"}~~No+leX+2uX_2'
{x,,};'V: N1 + 1 eX), and {X"}~~N,+IeX4, where k~n-m+ I, such that

NI N2

I A"O'(X,) q(x..} + L
1, =1 V=Nl+)

k

+ I
l'= N2+ I

) I " q(X,,-b) =0
",1m

. b~O+ 4>(x" - (j)
(1 )

for all qE Mo.

Let W = {XI' ... , xd = {WI' ... , »'ko}, where WI < ... < Wko' k o~k.
Next we shall show that k o= n - m + l.
Suppose that ko~ n - m, If f - p alternates once in (w" W, + I) for

some I ~i~ko-I, we choose S,E(W"Wi+I)\S(f). Let 2 0 =
{Sf E (Wi' W,+ d\S(f) :f- p alternates once in (11',,11',+ d, 1~ i ~ k o - 1}. If
2 = 2 0 u S(f), then 2 consists of at most ko - 1 + m ~ n - m - 1 + m =
n - 1 elements.

Now choose q EM such that q has simple zeros at the points of 2
and no other zeros. Choose A> 0 so that q(x) # 0 for all
xEU7~I(w"Wi+).]UU=ES(f)(Z,Z+A]. We may assume that o-(wd=
sgnq(wl+A) and (w l ,w2]nS(f)={zll,,,,,ZI,,}' Iff-p alternates once
in (1I'!,w2 ), then o-(W2)=(_I)'+lo-(wd and q has simple zeros
ZII, ..., ZI,' Sl in (WI' 11'2]. Thus sgn q(W2 + ).) = (-1)"+ 1 sgn q(w l + A) and
hence
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If f - p does not alternate once in (WI' w2), then a(I1'2) = (-1)" a(wd
and q has simple zeros ZI"''''Z", in (w"w 2 ]. Thus sgnq(w2 +A)=
(-I)" sgn q(w l + l) and hence

a( 11'2) = sgn q( 11'2 + I,),

Similarly, we have

a(w j ) = sgn q(w j +n
Therefore

a(x,,) q(xJ > 0,

1, q(x" + £5) 01m ? ,
b~O+ l/>(x,,+£5)

I
, q(x" - b) 0
1m ? ,

b~O+ I/>(X,,-b)

Choose Ao > 0 so that

..to II/>(x,JI < Iq(x,,)I,

Let qo = q + Aol/>· Then qo E M o and

a(x,.) qo(x,) > 0,

I
, qo(x,,+b) 0
1m > ,

b~O+ I/>(x,,+b)

1· qo(x" - b) 01m > ,
b~O+ I/>(x,,-b)

i=l, .."ko,

V= 1, ..., N I ,

v = N 2 + 1, ..., k.

V= 1, ..., N J •

V= 1, ,.., N"

v = N 2 + 1, ..., k.

Therefore qo does not satisfy Eq. (1). So we have k = ko= n - m + 1.
Let q, E M f be chosen as in the proof of Lemma 3.6. Then

a(x)ql(x»O forall XEX+ 2UX_ 2.

Choose Ao > 0 so that

forall XEX+ 2UX_ 2.

Let q2 = ql + Aol/>· Then q2 E M o and

a(x)q2(X»0 if XEX+ 2UX_ 2,

lim Q2(x+b»0 if XEX),
b~O+ I/>(x + b)

1
, q2(x-b) 0
1m >

b~O+ I/>(x-b)

Therefore No? 1. I
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THEOREM 3.11 (The Alternation Theorem). Let IE C[a, b]\M and
p E MI' Then p is a best copositive approximation to I if and only if p(x) t=. 0
and there exist n - m + 1 points w, < < wn ~ m +, in Xp such that 1- p
alternates once in each (w;, wj+d, i= 1, ,n-m.

Proof (= ) Suppose that there exist n - m + 1 points W) < ... <
I~'n-m+l in Xp such that I-p alternates once in each (11'"i,I1'i+Jl, i=
1, ..., n - m. If p were not a best copositive approximation to f, by
Theorem 3.8 and the Theorem on Linear Inequalities, there would exist a
hEM0 such that

a(x) h(x) > 0 if XE :'

. h(x+b) 0
if XEX3 ,hm >

,1-0+ I/>(x+b)

. h(x-b) 0
if XEX4 •hm >

0-0' I/>(x-b)

(2)

(3)

(4)

Let

and

It is clear that there is a 15 0 > 0 such that

(d;- 15 0 , dJ n (Xp u Z(h)) = 0,

(d" dj + 15 0 ) n (Xp u Z(h)) = 0,

Now choose ho EM such that

i= 1, ..., k,

i = k + 1, ..., k 1 •

SZ(ho) = SZ(h) u {d), ... , dk , dk + ), ... , dk , }

u {d, - 15 0 , .••, dk -150 , dk + I + 15 0 , ... , dk1 +bo},

DZ(ho) = DZ(h)\ {d" ..., db dk + b"', dk1 }·

Let q = aho. Then we may appropriately select a = 1 or a = -1 such that

\

k k 1

sgn q(x) = sgn h(x), for x E [a, b] ;~I (d; - 15 0 , dJ u j~Y+ 1 (d j , d; + 15 0 ),

Hence, from (2), (3), (4), and the fact that q has simple zeros at the points
in X 3 u X 4 , we have

a(x) q(x) > 0 if XEX:,

a(x)q(x+b»O if xEX3 ,O<b:S;bo,

a(x)q(x+b»O if XEX4 ,O<8:S;80 ·

(5)

(6)

(7)
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Choose A> 0 sufficiently small so that
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q(x)#O
n~m+l

forall XE U (Wi' wi+A].
i= I

Then, from (5), (6), (7), it follows that

i = I, ..., n - m + 1. (8)

Let (~I'i,wi+l]nS(f)={Zil"",ZiV,}' i=I, ...,n-m. Next we shall show
that q has at least vi + 1 zeros in (Wi' W i + 1J counting a double zero twice.

In fact, from the fact that f - p alternates once in (w;, Wi + 1)' it follows
that a(wi + I) = (-I )",+ 1a(w,.).

Suppose that q vanishes in (Wi' Wi+I] only at Zil' ..., zit', and each of
these points is a simple zero. Then

sgn q(w i + 1 + ).) = (-I )'" sgn q(W i + A).

From (8), it follows that a( }I'i + I) = ( -I )V, a(W;). This is a contradiction.
Thus q has at least Vi + 1 zeros in (Wi' Wi + I] counting a double zero

twice.
Now assume that there are v elements in S(/)\(w l , W n - m + l ]. Then

v + L:7': 1
m

Vi = the number of elements in S(f) = m. Hence q has at least
v + L:7,:;" (Vi + I) = n zeros in [a, b] and so q == O. This is a contradiction.
Therefore p is a best copositive approximation.

(= ) Suppose that p is a best copositive approximation to f By
Theorem 3.10, there exist n - m + 1 constants A" > 0, v = I, ... , n - m + I,
and n-m+1 distinct points {XV}~~ICX+IUX_[, {X"}~~No+IC

X+ 2 UX_ 2 , {X"}~:Nl+1cX3' and {XV}~:;:;2++\CX4' where No~l, such
that

~. () ) ~ 1 I' q( X v + J)
f..., A.va x" q(x" + 1..- J".v 1m ( ~)
v~l V=Nl+ 1 0-0+ e1J x,,+u

n-m+l (~)

" 1 I" q Xl' - U 0+ 1..- A" 1m
v=N2+ 1 0-0+ e1J(X,,-J)

for all qEMo'

Let W={Xl,,,,,Xn_m+l}={Wl,,,,,Wn_m+I}' where ~I'l<"'<

W n_ m+ I' Then f - p alternates once in each (Wi' Wi+d, i = I, ..., n - m + 1.
In fact, iff - p did not alternate once in some (w io ' wio + d, 1~ io~ n - m,

let

Zo = {SiE (Wi' Wi + d\S(f):f - p alternates once in

640/72/2-7
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for some Zo E S(f).

If 2 = 2 0 u S(f), then 2 contains less than (n - m) + m = n elements.
For the remainder of our proof, using the same argument as the

necessary part of Theorem 3.10, we will reach a contradiction. I

4. UNIQUENESS OF BEST COPOSITIVE ApPROXIMATIONS

LEMMA 4.1. IfqEMo\{O} hasn-l simple zeros in (a,b), then

lim q(z+(j) #0 and lim q(z-O) #0
b~O+ cP(z+(j) b~O+ cP(z-(j)

for all z E S(f).

Proof Suppose

I
· q(zo + (j) 0
1m =

b~O+ cP(zo+(j)

Since q E M o has n - I simple zeros in (a, b), there are XI < ... < X n In

(a, b) such that

q(XJ· q(xi +d < 0 for i= I, ..., n.

Assume that Zo E (x k _ l' Xk) and, without loss of generality, assume that
both q and cP are positive in the interval (zo, Zo + J.) for some suitable
).>0.

Choose ex> 0 small enough such that

for i = 1, ..., n.

We have

I
. (q-excP)(zo+(j)
1m = -ex < 0,

b~O+ cP(zo+(j)

so (q-:xcP)(y)<O for some YE(zo,min{(zo+J.),xd. But then q-excP
has a weak alternation of length n + 2 in XI> ... , Xk _ I' Zo, y, Xb ..., Xn , a
contradiction. I

LEMMA 4.2. Let Av > 0, v = 1, ..., n - m + 1 be n - m + 1 distinct con­
stants, let {x"}~~lcX:(N,?I), {XV}~:Nl+LcX3' and {x,,}7,:~;~\CX4
be n - m + 1 distinct points satisfying

for all q E Mo.
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If q E M ° salisfies
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q(Xv ) =0,

lim q(x v + <5) = 0
O~O+ t1>(x" + <5) ,

1
· q(xv-<5) 0
1m =

o~o+ t1>(x v - <5) ,

v=l, ..., Nt,

v=N,+I, ...,Nz,

v = N z + 1, ..., n - m + 1.

(9)

(10)

(11 )

Then q =0.

Proof (1) If N 1 =n-m+l, then q(xv) =0, v=I, ...,n-m+1.
Since XvEX;, v=I, ...,n-m+l, xv¢S(f)={Zt"",zm}, but q(Z,.) =0,

i = 1, ... , m. So q has n + 1 zeros and thus q == 0.

(2) If N 1 < n - m + 1, assume that q EM0 satisfies (9), (10), and (11),
but q~O. Let

DZ(q) n {X N1 + I' ..., xNJ = {dl , ... , dd,

DZ(q) n {X N2 + l, ... , xn - m + t} = {dll + I' , dlJ,

DZ(q)\{d l , ... , d11 , dll + l , ... , dh } = {d,l +
"

, dI3 },

SZ(q) = {SI, ...,Sk}·

Then k + 2/3 ~ n - 1.
Choose <5 0 > °such that

q(X) #0
13

for XE U [(d;-<5o,dj +<5o)\{dj })]

;=1

k

U U [(s;-<5o,s;+<5o)\{s;})].
;=1

If
u = min{x NI + I , ... , XN2' XN2 + 1 , ... , Xn - m+ 1 },

then U E (a, b).
Choose 1= n - 1 - k - 213 distinct elements 1" ..., II in

If
T= {SI' ... , Sk> II' ... , II' d l , ... , d13 , d l - <5 0 , ... , dl1 - <5 0 , dl1 + 1

+ <5 0 , ... , dh + <5 0 , dh + 1 + <5 0 , ... , dl3 + <5 0 },

then T has k + 1+ 213 = n - 1 elements.
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Choose qo E M such that qo(x) = 0 for all x E T. Let q I =aqo and select
a = + 1 or - 1 appropriately so that

sgn q(x" + 00) = sgn ql(X" + 00),

sgn q(x,. - 00) = sgn ql(X,- 00),

Choose ,.1.0> 0 such that

,.1.0 Iq\(x" +00)1 < Iq(x" + 00)1,

)'0 Iql(x,,-oo)1 < Iq(x,,-oo)l,

v = N z + 1, ... , n - m + 1.

v = N \ + 1, , N z,

v=Nz+l, ,n-m+1.

(12)

(13 )

If q2 = q - Aoql, then q2 $. 0 and Z(q) c Z(q2)' So q2 E Mo·
Since q I has n - 1 zeros, by Lemma 4.1,

for all Z E S(f).

Hence,

v=N2 +1, ...,n-m+1.

Thus,

v = N z + 1, ... , n - m + 1.

Therefore there exists 0 <°1 < 00 such that

sgn qz(x" + oil = -sgn ql(X" +°1 ) = -sgn q(x" + 00)'

v=N1 + 1, ... , Nz

sgn q2(Xv - 0J) = -sgn q 1(xv - 0 J) = -sgn q(x". - 00 ),

v = N 2 + 1, ... , n - m + 1.

But from (12) and (13), we have

sgn q2(X,. +00) = sgn q(x" + 00),

sgn q2(X" - 00 ) = sgn q(xv- 00 ),

v=N1 +l, ,N2

V = N 2 + 1, , n - m + 1.
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So qz has at least one zero in each (x,.+<>!, x,,+<>o), v=N1 + 1, .", N 2 , and
each (Xl' - 00 , X,. - <>,), v = N z+ 1, ..., n - m + 1. But q2 E M o and

v = 1, ..., n - m + 1.

Thus qz has N 1 +(n-m+l-Nt>+m=n+l zeros and qz=O. This is a
contradiction. I

THEOREM 4.3 (Strong Uniqueness). Let p E M r be a best Coposllwe
approximation to f E C[a, b]. Then there is a positive constant r = r(f) such
that

II! -qll ~ II! - pll +r IIp-qll

for all q E Mr. In particular, best copositive approximations are unique.

Proof Let p EMf be a best copositive approximation to f By
Theorem 3.10, there exist A,,>O, v=I •...• n-m+l, and {X"}~~lC

X+ 1UX_ 1• {X"}~~No+lCX+2UX_2. {X,,}~2,Nl+ICX3' {x,,}::~/+1ICX4'
where No ~ 1, such that

No NI

L }",O"(X,,) q(x,,) + L: A"O"(X..) q(x..)
,,~ 1 v ~ No+ 1

(14)

for all q E Mo.
Let

H = {q E M o : O"(x,,) q(x,.) ~ 0, v = No + 1, ..., N I ;

1
. q(x" + b)
1m m 5:) ~ 0, v == N I + 1, ..., N z;

J~o+'P(x,,+u

. q(x,,-O) }
hm ~ ~ 0, v == N z+ 1, ... , n - m + 1 .
J~O+ t/J(x" - u)

Obviously, for all q E MI , -q E H, so H\ {O} #- 0.
Suppose there is a q E H\ {O} with O"(x,,) q(x,,) ~ 0, v = 1, ... , No.
By (14), we have

q(x,,) == 0,

}' q(x,,+b) 0
1m ==

J~O+ t/J(x" +<5) ,

}. q(x,,-b) 0
1m ==

J_O+ cP(x,,-b) ,

v= 1•..., N I ,

v=N. + 1, ... , N z,

v = N z + 1, ..., n - m + 1.
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By Lemma 4.2, q =O. This contradicts the fact that q ~ O. Hence, for all
q E H\ {O}, there exists WE {I, ..., No} such that u(x,,) q(x",) > o.

Since H o = {q E H: Ilqll = I} is compact,

r = inf{ max u(xv) q(xv) : IIqll = 1, q E H} > O.
1 ~ v ~ No

If q EMf and q ~ p, then p - q E H. Therefore, there exists VoE {1, ..., No},
such that

It follows that

r IIp-qll ~u(xvo)[p(xvo)-q(xvo)]

= u(xvo)[f(xvo ) - q(xvo )] - u(xvo)[f(xvo ) - p(xvo )]

~ III-gil -III - pll·

Therefore,

III-qll ~ III - pll +r IIp-qll

for all q EMf· I
For every IE C[a, b], let rU) E M f be the best copositive approximation

to f Unlike in the classical theory, this best copositive approximation
operator is no longer continuous. An example showing this fact can be
found in [9].

However, if we define

then a similar argument to the one in the classical case [1, p. 82] implies
the following continuity theorem.

THEOREM 4.4. To each 10 E C[a, b] there corresponds a number it> 0
such that lor all I E Wfo'

II rIo - rIll ~ illi/o- fII·

5. COMPUTATION OF BEST COPOSITIVE ApPROXIMATIONS

In this section, we suggest a method for computing the best copositive
approximation. This method is based on converting copositive approxima-
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tion to restricted range approximation, and then applying the algorithm
developed for restricted range approximation to copositive approximation.
A direct algorithm remains to be developed.

For f E C[a, b]\M, let g l' ... , g k E M r be k linearly independent elements
so that

Throughout this section, we shall assume that f does not vanish on any
subinterval of [a, b].

If p is the best copositive approximation to f, then IIf - pll ::::;: IIfll and
thus Ilpll ::::;: 2 Ilfll.

Let

Define

C= max max lei I
lcl, ... ,cOED J ~i~k

and
k

G(x) = L g,(x).
;= 1

and

( )_{CG(X)
Uo x - 0

if XE V(.f)

if x E L(.f)

if x E V(.f)

if XE L(.f).

It is easy to check that uo, loEC[a,b]. Let u(x)=max(uo(x),f(x»),
l(x)=min(lo(x),f(x» and Kj={qEMII(x)::::;:q(x)::::;:u(x),xE[a,bJ}. It
is clear that u, IEC[a, b], l(x)::::;:f(x)::::;:u(x) and KjcMf ·

THEOREM 5.1. Let f E C[a, b]. Iff does not vanish on any subinterval of
[a, b], then the best copositive approximation to f is the same as the best
approximation toffrom Kj = {qEM Il(x)::::;:q(x)::::;:u(x), XE [a, b]}, where
u(x) and l(x) are defi"ned as above.

Proof The proof is fairly easy. It is left to the reader. I
Let Km = {q E M Il(x)::::;: q(x)::::;: u(x) + 11m}, where m is an integer.
Define

em=lIf-Pmll= inf Ilf-qll
qe K m
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e = II! - pil = inf II! - qll·
qEKI

Then we have the following theorem.

THEOREM 5.2. (a) Pm(.X) converges uniformly to p(x) as m -> eN.

(b) em i e.

Proof Since P E Kfc Kit" we have that

em = II! - Pm II ~ II! - pil = e

And since M m + I C M m ,

for all m.

Thus {em}:'~ 1 is a monotone increasing sequence bounded bye.
Let {Pn} be any subsequence of {Pm}. Since l(x) ~ Pn(x) ~

u(x) + lin, {Pn} is uniformly bounded. Therefore there exists a subsequence
{Pnk} of {Pn} so that it converges uniformly to an element p* E Kf .

Let e* = II! - p*ll. We shall show that e* = e.
In fact, it follows from p* E Kf that

e = II! - pil ~ II! - p*11 = e*. (15)

On the other hand, since Pnk converges uniformly to p*, II! - Pnk II ->

II! - p*ll. Thus

e* = II! - p*11 = lim II! - Pnk II = lim erIk ~ e. (16)
k-'x: k-+:x

Combining (15) and (16), we have e=e*.
By the uniqueness of best copositive approximation, we have P = p*.

This means that any subsequence of {Pm} contains a subsequence which
converges uniformly to p. Hence Pm converges uniformly to p. Conse­
quently, we have em i e. I

A Remes' type algorithm for computing Pm and em has been developed
by Taylor and Winter in [13]. Now since one may compute Pm and em'
and since Pm(x) -> p(x) uniformly and em ie, we have obtained an
algorithm for computing P and e.
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